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A C O U S T I C  R E S O N A N C E  IN T U R B O M A C H I N E R Y  W I T H  

A E R O D Y N A M I C  I N T E R A C T I O N  O F  T H E  C A S C A D E S  IN 

S U B S O N I C  GAS F L O W  

V. L. Khitrik UDC 621.515:534 

The urgency of the need for abatement of the vibroacoustic activity of turbomachinery (pumps, turbines, compressors, 

etc.) is well known [1-7]. One way to solve this problem is to lower the intensity of an ever-present time-periodic source of 
disturbance in turbomachinery, i.e., aerodynamic interaction between the impeller and the guide-vane (nozzle) assembly. It 
has been shown [4-7] that vibroacoustic activity is strongly influenced by the ratio of the numbers of rotating and stationary 

blades. In particular, it has been established [4-6] that the unsteady forces and torques generated by the indicated interaction, 

which induce pressure pulsations, and also the longitudinal, torsional, and transverse vibrations of the casing and impeller of 
turbomachinery can be substantially reduced by finding auspicious combinations of the blade counts of the impeller and guide- 

vane or nozzle assembly. However, it is important to note that the relations used to select the blading combinations in [4-7] 

have been derived Without regard for wave processes in the casings or ducting of the turbomachinery. On the other hand, 

several authors [2, 4, 8-10] have indicated the possibility of a considerable increase in the vibroactivity associated with 
aerodynamic interaction of the blade cascades of turbomachinery in the event of acoustic resonance in the gas flow in the 

interblade and discharge channels. 
Here, using elementary mathematics, we propose to compare the conditions for the onset of acoustic resonance in a 

gas flow in the interblade channels of the stationary cascade as they affect the choice of combination of numbers of moving 
and stationary blades with the analogous conditions for the onset of hydrodynamic disequilibrium, interpreted as the presence 

of transient periodic forces and torques acting on the stationary vanes of a turbomachine at the impeller blade frequencies with 
aerodynamic interaction of the cascades. We derive a relation for estimating the maximum ratio of the number of moving to 

stationary blades and the condition whereby acoustic pressure oscillations in harmonics of the impeller blade frequency are 

unamplified simultaneously in the gas flow in the interblade channels of the stationary cascade and in the discharge outlet of 
an axial:flow turbomachine. We demonstrate theoretically and confirm experimentally the possibility of the generation of 

pressure pulsations and, as a consequence, casing vibrations of turbomachinery in the presence of interaction of rotational 

pressure modes with the vanes of the stationary cascade in rotational harmonics of these modes that are multiples of the number 

of stationary vanes. 
1. An experimental investigation of acoustic resonance in the interaction of blade cascades and a theoretical 

determination of the conditions for its onset are reported in a study [8] of two annular cascades having a common symmetry 

axis, where one cascade rotates about this axis with angular velocity ft. To determine the velocity potential of acoustic 

disturbances having the spectrum of the impeller blade frequencies (kBn = nBfl, where n = +1,  +2 ..... and B is the number 

of blades on the impeller), Izmailov et al. [8] use the solution of the inhomogeneous wave equation with variable coefficients 

subject to homogeneous Neumann conditions on the blade surfaces and to the radiation condition at inf'mity [11]. The 

expression derived in [8] for the amplitude function of the velocity potential of acoustic disturbances with the frequency XBn 
has the form 

p - l . , - i  a. - ( k  a /b)" 
(1.1) 
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where V is the number of stationary vanes, ~pm and kpm are the eigenfunctions and eigenvalues of  the problem, respectively, 

a is the freestream sound velocity, b is a characteristic length of the blades, and Cpm(n) denotes the coefficients of the series 

expansion in eigenfunctions of the function describing the physical conditions of impenetrability at the stationary vanes in the 

presence of aerodynamic interaction of the cascades [10, 12]. 
It has been shown [8] that the only nonvanishing terms of the series in (1.1) are those which satisfy the condition 

O < m = n . B + l ' V < g , n , / = O ,  - -1  . . . .  (1.2) 

It follows from Eqs. (1.1) and (1.2) that acoustic resonance of the gas flow through the stationary cascade as a result of  cascade 

interaction can occur only when 

J.~,, = n B ~  = to*t,. 

* = Re(kpm a/b) is the natural frequency of the gas oscillations for the corresponding eigenfunction satisfying Here Wpm 
condition (1.2), and Re(k~m a/b) is the real part of the bracketed expression. 

2. It is instructive to compare relation (1.2) with the previously derived [4] conditions for the excitation of transient 

forces and torques acting on the vanes of a guide-vane assembly in harmonics of the impeller blade frequency. 
The following condition for the excitation of a transient torque has been obtained in [4]: 

n.B 
V - sl (2.1) 

(s 1 is a positive definite integer). 
From relation (2.1) we deduce 

n a  = stY. (2.2) 

Substituting Eq. (2.2) into the left-hand side of inequality (1.2), we have 

O<m=na+/V=stV+j'r V ( s  t + 1 ) ( / = 0 , - - - 1 , - - 2  . . . .  ) (2.3) 

It is evident from (2.3) that V(s 1 + j) > V. 
Consequently, despite the presence of a transient driving torque, acoustic resonance of the gas flow in the interblade 

channels of the stationary cascade does not occur. 
It is also noted in [4] that, when the numbers of moving and stationary vanes are chosen to satisfy the inequality 

nB 
m ~ sl  ' ( 2 . 4 )  

V 

the net transient torque acting on the casing of the turbomachine is equal to zero. 

Inequality (2.4) can be written in the form 

ttB m l 
= s~ + -'~-, (2,5) 

where 0 < m 1 < V, and s 2 and m t are positive definite integers. 
Equation (2.5) can be used to transform the left,hand side of inequality (1.2): 

, .B + /V  = s2V + rnx + /V  = (s~ + j )V  + m r (2.6) 

It follows from (2.6) that, if we choose j = - s  2, then 

nB + f V  = rn1< V. (2.7) 
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Thus, when the combination of numbers of moving and stationary vanes is chosen in compliance with [4] for 

elimination of the driving torque, acoustic resonance of the gas flow in the interblade channels of the stationary cascade is 

possible according to (2.7). 

The condition for the generation of the total transient driving force acting on the casing of a turbomachine has been 

obtained in [4]: 

nB+ 1 
V 

- -  = st (integer st > 0). (2.8) 

Relation (2.8) permits the left-hand side of inequality (1.2) to be written as follows: 

nB + j V  = stV + j V  -T- 1 = (s~ + j ) V  -T- 1. (2.9) 

It is evident from (2.9) that, for example, when the right-hand side of this inequality is equal to (s 1 + j)V - 1, it is 

sufficient to choose j = - s 1 + 1 in order for its left-hand side to be equal to nB + jV = V - 1 < V. When the right-hand 

side is equal to (s 1 + j)V + 1, we setj = - s  I and obtain nB + jV = 1 < V. 
Consequently, acoustic resonance is possible in the presence of a nonzero net driving force acting on the casing of  the 

turbomachine. 
We now investigate the condition obtained in [4] for the nongeneration of a finite net transient aerodynamic force acting 

on the turbomachine casing: 

n . B •  

V ~ : $ 1 '  

which can be written in the form of an equation 

n . B ~  1 m 1 
V - s2 + "-V-' (2.10) 

where 0 < m 1 < V, and s 2 and m I are integers. 
We transform the left-hand side of inequality (1.2) in accordance with (2.10): 

nB + j V = V s  2 +m~ + 1 -T-iV =( s2  + j ) V  + m r  T- 1. (2.11) 

Equation (2.11) clearly shows that it is sufficient to choose j = - ~  in order for the left-hand side of  (1.2) to be equal 

tonB + j V  = m 1 -T-V. 

Inasmuch as m 1 < V, we therefore have m 1 - 1 < V. 
Consequently, as in the choice of blade combination to ensure the absence of a net driving torque according to [4], 

acoustic resonance is possible when the combination of numbers of moving and stationary blades is chosen in accordance with 

[4] for the absence of a net driving force acting on the turbomachine casing. 

3. A model of  the aerodynamic interaction of  blades of  the moving and stationary cascades of  turbomachinery is also 

discussed in an investigation [9] of  the propagation of pressure waves generated by the interaction of blades in a cylindrical 

discharge channel of an axial-flow turbomachine. In [9] an expression is derived for the pressure pulsations in the interaction 

of an impeller having B blades with a single stator vane of  a turbomachine. We note that the model can be used in this case 

to describe the propagation of  pressure waves in the discharge channel of a centrifugal turbomachine, for example, when such 

waves are generated by the interaction of the impeller with the discharge tongue in a centrifugal pump with a bladeless diffuser. 

The indicated expression has the form 

p(O, t)= ~ ~amcos(s0 - nB~2t + di~ ) (3.1) 
n m l l u - -  

(CI'sn is the initial phase of  the oscillations). 

The following relation for the pressure pulsations at a point situated on the axis of  an axial-flow turbomachine with 

V vanes in the stationary cascade (V > 1) and B blades in the moving cascade has been obtained [9] by summation, at the 

given point, of  the pressure pulsations propagating from all V stationary vanes interacting with the impeller blades: 
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V - I  

p,, = Xancos  [s(O -- qAO) - nB f2 ( t  - qAt)  + do,,l .  
q-O (3.2) 

Here A0 = 2a-/V is the pitch of the stationary cascade, and At = A0/[2 = 27r/VO. Carrying out the summation in (3.2), we 
have 

cos(sO - n B f 2 t  + dO.,,) 

(3.3) 

sin(s0 - ..Bt2t + do)ta=.  

It is evident from relation (3.3) that Psn = 0 for 27r(nB - s)/V # 27rk (k = 0, + 1, +2  .... ). 

For 2a-(nB - s)/V = 27rk, passing to the limit in (3.3), we obtain 

p,. = Va cos(SO - nBf2 t  + do=). 

Consequently, the resultant pressure pulsation on the axis of an axial-flow turbomachine has a nonzero value under 
the condition 

s = n.B + k V .  (3.4) 

In estimating the resultant pressure pulsation in the cylindrical discharge channel of an axial-flow turbomachine at an 

off-axis point, we must take into account the phase shift of the pressure oscillations in acoustic waves arriving at the indicated 

point from the stationary vanes of the guide-vane assembly that interact with the impeller blades. 

Let the point M be situated in the discharge channel i (see Fig. 1) at a distance p from the center O of  the guide-vane 

assembly 2; the radius vector OM drawn from the center of the guide-vane assembly forms an angle ~b with the axis of the 
impeller 3 of the turbomachine. Considering the right triangle MNAq, in which / N is a right angle, we find that the path 

traversed by the acoustic wave from the q-th guide vane to the point M is given by the expression 

MAq = ~lpZ + Rz _ 2Rpsin~cos0, 

where R is the outside radius of the guide-vane assembly. 

Consequently, in determining the resultant pressure pulsation in the n-th harmonic of the impeller blade frequency, we 

must take into account the phase angle 

_ n.BQ 
ctq = M A q ( n B f 2 ) / a  = v'p 2 + R z - 2Rpsin~co.~ a (3.5) 

Substituting Eq. (3.5) as additional terms in the arguments of the trigonometric functions in Eq. (3.2), we can 

determine the resultant pressure pulsation at any - -  not necessarily axial - -  point M of a specific turbomachine by carrying 
out the numerical summation in Eq. (3.2). 

We now consider the important practical case where it is required to determine the pressure pulsations in the peripheral 

region of the plane directly adjacent to the outlet of the guide-vane assembly of a turbomachine. This case corresponds to an 
angle ~b ~ ~r/2 and p = R. 

Equation (3.5) now has the form 

= v , ~ R q l _ c o s O n . ~  (O) n.~ nBQin~. 
a q  a a a 
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Fig. 1 

To eliminate resonance amplification of the pressure oscillations at the point M as a result of interaction between 

acoustic waves arriving from two contiguous guide vanes q and q + 1, the difference in the phase angles A~q = ~q+l  - ~q 

must be smaller than 27r. This condition is written 

aBQ[" o+6a in-~] A a q =  2R a L sin 2 - s 

n B Q  , A0 2 0 + A 0  
= 4 R  s m - - - c o s ~  < 2 ~ .  

a 4 4 

The argument of  the cosine in Eq. (3.6) satisfies the inequality 

(3.6) 

Thus, at 0 = 0 

20 + A0 
0 <  ~ < : r .  

4 

20 + A0 21r Ir 
4 4V 2V 

< r r .  

and at 0 = (V - 1)A0 

7.0 + AB (2 V  - I)A0 (2V - l)2.,,x ( .~..~ 
---- = - - - -~  I -  < ~ .  

4 4 4 V  - 

Hence, Aotq is a monotonically decreasing function of  its argument 0. 

This property enables us to transform inequality (3.6) as follows: 

~ (2v - I)A0 nBQ . A8 n.Bf2 A0 Rrd~f~ 2n 
4R sia-""cos < 4R sin----< 4R - - -  

a 4 4 a 4 a 4 a V"  

Thus, Eq. (3.6) is cle'arly satisfied if the following inequality holds: 

2a~Rn.BQ 
~ <  21~r, 

aY 

from which we deduce 
Rns B 
~ - - < 1 .  

a V 
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TABLE 1 

%, rad/s 

2821 
2482 
2287 
2187 
2086 
1841 
1483 
3311 

~2vt, rad/s 

7.,$40 
2463 

2174 
2O53 
1847 
1478 
3358 

1 
3 
4 
5 
6 
8 
13 
- 2  

~e, rad/s 

3569 
S1588 
3801 
3996 
4398 
4744 
4882 

art. rad/s 

3519 
3695 
3889 
4103 
4348 
4618 
4926 

- 3  
- 4  
- 5  
- 6  
- 7  
- S  
- 9  

Consequently, to eliminate resonance amplification of the pressure oscillations in harmonics of the impeller blade 

frequency, the maximum ratio of the number of moving and stationary blades must satisfy the condition 

a 

< - -  (3.7) 
V RQ" 

Relation (3.7) admits the following interpretation. Let us rewrite it in the form 

n.B~2 R 2:rR nBk'2 r v 

a V V 2,~a L 
< l, (3.8) 

where r v is the pitch of the stationary cascade, and L is the wavelength of the pressure oscillations in the n-th harmonic of the 

impeller blade frequency. 

It follows from (3.8) that the wavelength of the pressure oscillations must be greater than the blading pitch of  the guide- 

vane assembly in order to eliminate resonance amplification of the pressure oscillations in the discharge section at the outlet 

of the guide-vane assembly in a region far from the axis of the turbomachine. 

We have established the fact that, when the condition nB/V = s 1 is satisfied (s I is a positive integer, s 1 _> 1), acoustic 

resonance of the gas flow in the interblade channels of the stationary cascade of a turbomachine does not occur, even though 

(according to [4]) vibrations and pressure pulsations in harmonics of the impeller blade frequency are generated by the net 

transient torque acting on the stationary vanes. The combined analysis of this condition and inequality (3.7) shows that the 

following relation must be satisfied if the resonance amplification of pressure oscillations is to be eliminated simultaneously 

in the discharge channel of an axial-flow turbomachine and in the interblade channels of the stationary cascade: 

nB a (3.9) 
v RQ 

It follows from inequality (3.9) that 

M < I/s t < I, (3.10) 

where M u = Rfl/a is the angular (circumferential) Mach number. 

Inequality (3.10) coincides with the previously obtained [9] condition for the nontransmission of pressure waves in 

harmonicsof  the impeller blade frequency in the discharge channel of an axial-flow turbomachine. 

Consequently, to eliminate the simultaneous amplification of pressure oscillations in the,interblade channels of the 

stationary cascade and in the discharge channel of  an axial-flow turbomachine, it is necessary that acoustic waves not propagate 
in the discharge channel. 

4. It is important to note that [9] acoustic waves generated by interaction of the moving and stationary cascades can 

be interpreted in accordance with Eq, (3.1) as the superposition of tangential pressure modes rotating with an angular velocity 

fls = nBfl/s, where s is the number of pressure maxima on a circle of diameter equal to the diameter of  the outlet from the 

guide-vane assembly. The interaction of these rotating pressure modes with the stationary Vanes will obviously induce acoustic 

waves with a frequency nBf~ = sf/s = s(nBf~)/s. On the other hand, the stationary vanes apply a periodic perturbation to the 

rotating modes with a frequency flVs = 1V(nBfl)/s (I is a positive definite integer), as becomes clear when we transform to a 
coordinate system rotating with frequency fir 
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The above-mentioned perturbation leads to the generation of pressure oscillations at frequencies f~Vs, which will 

necessarily be reflected in the spectrum of the pressure pulsations and, as a result, in the spectrum of the turbomachine 

structural vibrations induced by these pulsations. This fact has been confirmed in experimental studies of a centrifugal pump 
with a bladeless diffuser and a 12-blade impeller. During the operation of the pump the impeller blades interact with the 

discharge tongue, which functions as a solitary stationary vane in the given situation. 

The foregoing is evidenced by the presence of discrete components at the frequencies f~Vs in a vibration spectrogram 

obtained in tests of the given pump. 
Table 1 shows the frequencies fie corresponding to the experimentally obtained discrete components, along with the 

frequencies flVs calculated from the equation 

f ~ ,  = W ( n a ~ ) / s  

(for fl = 27r.490 rad/s, V = 1, B = 12, and l = 1) and the integer values of the parameters n and k in the expression (3.4) 

used to determine s. 
It is evident from the table that the experimental and calculated frequencies of the discrete components of the vibration 

spectrum exhibit satisfactory agreement. We note that the frequency range of the discrete components spans frequencies both 

above and below the impeller frequency (3078 rad/s). The experimental vibration amplitudes at the discrete frequencies 

indicated in the table range from 0.81 to 1.13 times the vibration amplitude at the impeller frequency, suggesting that the level 

of these vibrations is quite high. 
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